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Flow in a channel with a moving indentation 
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The unsteady flow of a viscous, incompressible fluid in a channel with a moving 
indentation in one wall has been studied by numerical solution of the Navier-Stokes 
equations. The solution was obtained in stream-function-vorticity form using finite 
differences. Leapfrog time-differencing and thc Dufort-Frankel substitution were 
used in the vorticity transport equation, and the Poisson equation for the stream 
function was solved by multigrid methods. In  order to  resolve the boundary- 
cwndition difficulties arising from thc presence of the moving wall, a time-dependent 
transformation was applied, complicating the equations but ensuring tha t  the 
computational domain remained a fixed rectangle. 

Downstream of the moving indentation, the flow in the centre of the channel 
becomes wavy, and eddies are formed between the wave crests/troughs and the 
walls. Subsequently, certain of these cddies ‘double’, that  is a second vortex centre 
appears upstream of the first. These observations are qualitatively similar to  
previous experimental findings (Stephanoff et al. 1983, and Pedley & Stephanoff 
1985), and quantitative comparisons are also shown to be favourable. Plots of 
vorticity contours confirm tha t  the wave generation process is essentially inviscid 
and rcveal the vorticity dynamics of eddy doubling, in which viscous diffusion and 
advcction are important a t  different stagcs. The maximum magnitude of wall 
vorticity is found to  be much larger than in quasi-steady flow, with possibly 
important biomedical implications. 

1. Introduction 
Detailed knowledge of unsteady separated flow in tubes with localized time- 

dependent eonst,rictions is thought to  be an important prerequisite for understanding 
the self-cxcited oscillations tha t  develop when fluid flows through an externally 
compressed collapsible tube (see Cancelli & Pedley 1985, and references therein). Also 
t.he time- and space-dependent shear stress exerted by flowing blood on the walls of 
non-uniform arteries is important in the early stages of atherosclerosis (Nu et al. 1985), 
and needs to  be better understood. I n  an approach to  these problems, experiments 
ha,ve been carricd out on flow through a two-dimensional channel in which part of 
one wall executes prescribed in-and-out motions, so that  the fluid fiow problem is 
uncoupled from the (complex) solid mechanics of the wall. Visualizations of the flow 
were first reported by Stephanoff et al. (1983) and quantitative measurements were 
made by Pedley & Stephanoff (1985): hereinafter referred to  as SPLS and PS 
respectively. The main findings were as follows: a train of propagating waves is 
observed to  grow downstream of the moving indentation during each cycle, for a 
wide range of Strouhal numbers (st > 0.005) and Reynolds numbers (He between 360 

t Present address : Smith Associates Ltd, Surrey Research Park. Guildford. Surrey. GIT:! 5YP. 
UK. 
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and 1260), and regions of closed streamlines (‘eddies’) are formed between the 
sinuous core flow and the walls. Subsequently certain of the eddies (those nearest the 
moving indentation) ‘double’, that  is a second eddy appears upstream of the first, 
the timescale for the formation of the second eddy being very short. An inviscid, 
small-amplitude theory was proposed, and gave good agreement with experimental 
measurements of wave crest positions, but did not describe eddy doubling. According 
to the theory, the waves are generated as inviscid perturbations to the vorticity 
distribution in the oncoming flow, and were thercfore referred to as ‘vorticity 
waves’. They can also be thought of as the large-amplitude limit of Tollmien- 
Schlichting (TS) waves, as analysed by Smith & Burggraf (1985) and discussed by 
PS. Other theoretical studies of large-amplitude TS waves, in external boundary- 
layer flow, include those by Duck (1985) and Smith (1986). 

Experimental observations of waves in incompressible internal flow include those 
of Cherdron, Durst & Whitelaw (1978), who found that steady flow through a 
symmetric expansion in a two-dimensional channel forms large-amplitude asym- 
metric waves, with eddies underneath, a t  values of Re between 500 and 800. Sobey 
(1985) repeated some of their observations, and in addition found much stronger 
asymmetric waves when the flow was oscillatory (0.004 < St < 0.008). The eddies in 
his experiments look very similar to those of PS, and also tend to double. Armaly 
et al. (1983) observed one or two relatively weak standing eddies in steady flow 
downstream of an asymmetric expansion (a step in one channel wall), but only for 
a limited range of Re (50 < Re < 640) ; flow visualization by Bertram & Pedley (1983) 
of flow past an asymmetric indentation with sloping ends failed to reveal such eddies 
in steady flow. 

I n  the present study, the Navier-Stokes equations for an incompressible fluid have 
been solved numerically for boundary conditions chosen to simulate those of the 
experiments of SPLS and PS. The motivation is both to verify the numerical 
technique by an accurate simulation of measured quantities (also providing a check 
on the somewhat tentative measurements of PS) and to use it to compute 
quantitative details of the velocity and vorticity fields. Particular attention is paid 
to eddy doubling, because of its wider applicability, and to predictions of wall 
vorticity, both for the light i t  sheds on eddy doubling and because of the importance 
of wall shear stress in atherogenesis. 

The aspect ratio of the channel used in the experiments of SPLS and PS was 10, 
and features of the flow were observed to be nearly uniform in the spanwise direction 
over most of the flow cycle, so that a two-dimensional simulation is appropriate. 
Whilst many solutions of the unsteady Navier-Stokes equations have been described, 
there are few with moving boundaries. Those who have studied such problems 
include Viecelli (1971), who adapted the MAC method to solve free-surface and 
‘flexible-bag’ problems; Peskin (1972, 1977) who, in modelling cardiac flows, 
replaced moving solid boundaries by distributions of force in such a way that the 
appropriate boundary conditions were satisfied; and Daly (1974) who used a mixed 
Eulerian-Lagrangian method and studied the propagation of pressure pulses in 
flexible tubes. In  these works, interaction of the fluid and solid mechanics was 
allowed for, whereas in other contexts, including the present one, the motion of the 
boundary has been prescribed. Hung & Schuessler (1977), for example, computed 
inviscid flows in models of prosthetic heart valves. More recently, Robertson, Clark 
& Cheng (1982) have solved the Navier-Stokes equations for planar channel flow 
with symmetrical moving boundaries, a t  Reynolds numbers somewhat smaller than 
those considered below. Their method was to transform a computational region with 
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a moving boundary of relatively complex shape into a fixed rectangle, thus giving a 
system of equations with coefficients dependent on both position and time, but with 
simple boundary conditions. A similar method was developed for the present 
problem on the basis of techniques used previously for fixed-wall computations 
(Sobey 1980 and Ralph 1986, for example). Robertson P t  al. did not predict the 
occurrence of waves, no doubt because symmetry was imposed on the flow, and the 
largest Reynolds number they considered was about 840 in the present notation, 
about half of the smallest value considered here. 

In the present paper, a full formulation of the problem is given in $2, and the 
methods of solution described in $3, including an assessment of the effects of the 
mesh sizc on computational accuracy. Results for three cases are described in detail 
and discussed in $4, whilst $5 contains further discussion. 

2. Formulation of the problem 
The volumetric flow rate 4, per unit channel depth upstream of the moving 

indentation is taken to be fixed, as in the experiments of SPLS and ITS. The 
unperturbed channel width is 4 and a reference velocity is then 

or, = Qo/4. (1) 

The timescale for the oscil!ations of the moving indentation is the period l/f, so that 
the dimensional time is t/f; 1; is the fluid kinematic viscosity. Thus for a given shape 
and amplitude of wall indentation, the problem is specified by any two among the 
Reynolds number Re, Strouhal number St, and frequency parameter a3, defined 

(2) Re = - St = ?, a2 = ReSt. 

If the longitudinal and transverse coordinates are 4(x,  y), and the corresponding 
velocity components are Go (d$/ay,-d@/ax), where $ is the stream function, then 
the governing equation for the vorticity <, is 

by 
8 ,4  4f 

"0 
1 ; '  

where 6 is defined by 

The walls of the channel are defined to be at  y = 1 and y = F ( x ,  t ) ,  and, as in SPTS 
and PS, F ( x ,  f )  is taken to be of the separable form 

(5) 

where h( t )  = 0 for t < 0, h(t) 2 0 for t 2 0, and g(x)  2 0. Thus the moving wall is 
initially flush with the plane y = 0, and is never thereafter withdrawn beyond y = 0;  
this constraint is not necessary for the numerical method to work, but is imposed for 
consistency with the experiments. 

In  order to simplify application of the boundary conditions, we make the 
transformation 

F ( x ,  t )  = g(x) h ( t ) ,  
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so that the boundaries a t  y = F ,  y = 1 become z = 0, z = 1 respectively. Under this 
transformation, (3) and (4) become 

and 

where 

and 

i -z  aE' 
i-E' ax'  p , ( x , x , t )  = 

1-72 [ Z Y +  2 (aF)'] 
p,(x,z,t) = -~ __ ~ - 

i-F a x 2  i-F ax 
1--Z a F  

p,(x, z ,  t )  = ~ - 
i-F a t '  

The initial condition is imposed when F = 0 and is that of Poiseuille flow 
throughout the channel ; that is 

5 = 6(2z-  l ) ,  (14) 

$ = ~' (3-22) .  (15) 

(16) 

At t = 0, a portion of the wall z = 0 begins to  move, with h(t)  given by 

h(t) = $( 1 - cos 27Ct). 

The shape of the indentation is described by g(x), where 

g(x) = 0 for x1 < x < x2,  
for x2  < x < x3, 

for x, < x < xs, 

= $c{l+ tanhP(x-xz,)) 

= +~{l- tanhpx} 
= €  for x3 < x < x4, 

= 0  for x5 < x < x6, (17)  

and this reproduces approximately the geometry of SPLS and PS if the amplitude 
parameter E ,  the slope parameter p, and the parameters xi(i = 2 ,  .. ., 5 )  and x, are 
given appropriate values (see figure 1). The origin of the axial coordinate is a t  the 
centre of the downstream slope of the indentation. We have taken E = 0.38, /3 = 4.14, 
( x 3 - x 2 )  = (xs-x4) = 2.5, (x,-x,) = 8 ,  x,+x3 = 2x, and x , + x ,  = 0; that is the size 
and shape of the indentation have been fixed, but x1 and x6 have been varied in order 
to assess the effects of applying the up- and downstream boundary conditions a t  finite 
distances. Note that for x1 < x < x2 and xs < x < x6, p ,  = 1 and pz = p ,  = p ,  = 0,  so 
that (7 )  and (8) reduce to the form of (3) and (4). 

As F ( z ,  t )  is separable, the boundary conditions a t  y = F ( x ,  t )  can be written 

and 
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FIGURE 1 .  Representation of the computational domain. Lines of constant r and constant a are 
shown a t  the time of maximum indentation, and the y-scale is expanded by a factor of 2 compared 
to  the x-scale. 

so that  the condition on $ a t  the indented wall is 

dh s:, dt 
$ = -Xt g ( d )  dx’-. 

$ takes the value unity on the boundary at y = z = 1. 
Conditions on the vorticity a t  the walls are obtained by substituting into (8) values 

of the stream-function derivatives such tha t  the fluid velocity components match 
those of the wall locally. Thus, a t  x = 1,  where the wall is at rest, we obtain 

The second term of (22) implies tha t  even in the absence of a mean flow, vorticity is 
generated by a pulsating hump on which the no-slip condition is satisfied. through 
the rotations of wall elements. 

The upstream and downstream boundary conditions require parallel flow at 
infinite distance from the indentation, with the upstream flow being of Poiseuille 
form. How this requirement is translated into conditions at the finite up- and 
downstream boundaries, x, and x6, of the computation zone is described in the next 
section. 

3. Numerical solution methods 
3.1. Overall solution strategy and the vorticity transport equation 

A standard vorticity--stream-function formulation has been utilized, but since the 
coeficients p, ,  p, and p ,  in ( 7 )  and (8) are time-dependent, some modification of the 
usual algorithm (Roache 1976) for solution of the equations in this form is necessary. 
At each timestep the sequence of operations is as  follows: 

(1) Update 5 at internal points and the outflow boundary. 
(2) Update cwcffic+xts p , ,  p,, p ,  and p,. 
(3) Update $ on the boundaries. 
(4) Solve Poisson-type equation for $ at internal points. 
(5) Update 6 a t  the walls. 

Note that  6 a t  internal points is updated prior to  the updating of the coefficients, 
because a leapfrog finitc-difference scheme is used to  represent the vorticity 
transport equation, and the coefficients and derivatives on the right-hand side of (7) 
are thus evaluated a t  the same time level. 

The problem was to  be solved using a CYBER 205 computer incorporating vector 
I F1.Y 190 
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processing, and this fact influenced the choices of numerical methods. Hence an 
explicit scheme was chosen to  update the vorticity field, in preference to  the AD1 
approach, since the inversion of the tridiagonal matrix which is required in the latter 
case is not readily vectorizable. An additional argument against the use of AD1 
met>hods in the present case is the fact that  a scheme accurate to  second order in the 
timestep size cannot be found for equations in which there is a cross-derivative term 
(McKee & Mitchell 1970) ; such a term is present in (7 )  because of the form (9) for 
V2<. Thus a mid-point leapfrog scheme was adopted, with central second-order 
differences throughout with equal increments in x: and z ,  and using the Uufort- 
Frankel substitution (Roache 1976, p. 61). The finite-difference expression used to  
update 5 at each timestep is given in the Appendix. 

3.2. The Poisson equation for  the stream function 

Equation (8) was represented by second-order central differences, and the resulting 
finite-difference equations (see Appendix) solved by relaxation methods, using the 
multigrid stratcgy given as ‘Cycle C’  in Brandt (1977). Each sweep was carried out  
by Jacobi relaxation, with under-relaxation factor 0.8. The parameters governing 
switches to  coarser and finer meshes took the values 7 = 0.625 and 8 = 0.219 in 
Brandt’s notation, with unweighted injection of fine-mesh residuals and linear 
interpolation of coarse-mesh corrections. The common mesh-size ratio was 2 .  Overall 
convergence was determined by the size of the maximum rcsidual on the fincst grid. 
which was required to  bc less than 0.1 x h4. where 12 was the finest mesh spacing. 

3.3. Boundary conditions 

The Woods expression for wall vorticity was utilized (Roache 1976, p. 141), although 
modification of the usual form was necessary because of the transformation (6) and 
the fact tha t  the wall a t  z = 0 is moving. The finite-difference expressions for wall 
vorticity, which are accurate to  order h2, are given in the Appendix (A 13 and A 14). 
The stream function was held constant at a value of unity on z = 1 ,  whilst on z = 0 
equation (20) was utilized, with an  analytic expression for the integral evaluatcd at 
each node. 

The outflow boundary condition of parallel flow a t  infinity was of nwessity 
replaced by conditions on the derivatives of @ and 5 at the computational boundary. 
@ at outflow was obtained by solving, a t  each timestep, the tridiagonal system 
resulting from a neglect of the axial derivative in (8) ( p z  being indentically zero at thc 
outflow boundary). The vorticity was found by assuming the third derivative of 5 
with respect t o  x to be zero at each node adjacent to  the outlet boundary. a first- 
order-accurate finite-diffcrence representation of this derivative leads to  the 
extrapolation formula given in the Appendix (A 15). At  inlet, a Poiseuillc form was 
imposed on the vorticity, and @ was again obtained by solving a tridiagonal system 
(once only), the axial derivative in @ having been neglected. 

The effects of imposing these boundary conditions artificially close to  the moving 
indentation was assessed by varying the positions of the computational boundaries, 
and a discussion of the results of these changes is given in the next subsection. 

3.4. Accuracy and stability 
A Taylor expansion of (A 1 )  shows the error terms to  be of orders 

1 1 z 1  
-h2,  -h2,  (i) - k2, X t  012 a2’ 
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FIGURE 2 .  The effects of mesh size on wall vorticity plots, a t  t = 0.75 in case 11. ( a )  lower wall ; ( b )  
upper wall. Solid rurves are for h = A, uniform dashed curves for h = & and non-uniform dashed 
curves for h = &. 

where k is the timestep size. The third term arises because of the Dufort-Frankel 
substitution, and although at first sight may appear to be the most important, thc 
size of the timestep required for stability is so small that this is not the casc. The 
orders of error are, in fact, given in dccrcasing order of size for typical calculations, 
with the first error being O(Re) greater than the next. Thus, in the high-Reynolds- 
number flows of interest, the dominant crror is of order ( l / $ t )  h2. 

Numerical tests have thus concentrated on varying h, with Ic determincd by 
stability considerations. Figure 2 shows sample wall-vorticity plots obtained with 

$ 2  
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Spatial and temporal increments 

Re ASt h k h k h k 

Case I 507 0.037 1/24 113200 1/32 114000 1/48 lj6000 

Case I1 600 0.057 1/24 113200 1/32 114000 1/48 1/6000 

Case 111 670 0.019 1/24 116000 1/32 I/lOOOO 1/48 l/SOOOO 

TABLE 1 .  Flow parameters of the rases studied 

Case 1 Case I T  Case I11 

h = 1  h = 1  h = L  h = L  h = L  h = &  
32 48 24 32 4H 24 32 24 h = L  h = 1  t / b  = 1 

0.1 13.00 12.99 12.97 18.49 18.48 18.45 9.96 9.97 9.96 

0.2 19.52 19.52 19.52 28.23 28.20 28.17 14.62 14.63 14.64 

0.3 25.13 25.12 25.11 35.12 35.12 35.13 19.48 19.51 19.53 

0.4 25.07 25.07 25.06 31.82 31.81 31.82 21.20 21.20 21.21 

0.5 16.07 16.07 16.07 15.44 15.44 15.45 16.61 16.61 16.61 

0.6 18.76 19.06 19.43 42.95 41.27 42.67 13.23 13.35 13.50 

0.7 19.96 19.92 20.08 55.44 43.87 39.70 11.37 11.37 11.41 

0.8 16.72 16.56 16.47 34.43 28.18 28.96 8.91 8.92 8.95 

0.9 15.05 15.12 15.17 31.74 32.43 31.64 7.15 7.10 7.07 

1 .o 13.33 13.48 13.61 29.63 29.57 28.48 7.97 7.98 8.00 

TABLE 2. Quantitative assessment of the effects of mesh size on solutions : values of the maximum 
vorticity on the upper wall (for - 1.25 < x < 11.25) as a function of time and mesh size, for flow 
cases I, TT and 111 

three different values of h(&, & and A) for one of the flows considered in detail (case 
11, see table 1 ) .  The present concern is with the apparent convergence of the scheme 
as h decreases, and it can be seen that there is indeed close correspondence of the 
graphs for h = & and &, whilst the results for the coarsest mesh show qualitatively 
very similar features. The time t = 0.75 was chosen as a ‘worst case’ to illustrate the 
dependence on mesh size since the wave which is generated downstream of the 
indentation has, by this time, given rise to a complex vorticity distribution. at earlier 
and later times in the cycle there is even less dependence of vorticity on mesh size. 
For cases I and I11 similar comparisons of wall-vorticity plots were made for a 
number of values of h and the agreement was as good as or better than that in case 
11. It can be seen from figure 2 that a sensitive measure of the mesh-size dependence 
is the variation with mesh size of the maximum value of vorticity at the wall (the 
unindented wall, say) Cmax, and values of Cm,, for cases 1, 11 and HI, a t  various times 
in the flow cycle and for different values of h are given in table 2. The agreement of 
c,,, for the finer meshes suggests that  the quantitative accuracy of the numerical 
results is quite good. Finally, it should be stated that there is a correspondingly close 
similarity between streamline plots obtained for different mesh sizes. 

The effects on the solution of applying the up- and downstream boundary 
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FIGURE 3 .  The effects of artificial numerical boundary conditions on wall vorticity plots a t  t = 0.80 
in case I :  ( a )  lower wall; (b )  upper wall. Solid curves are for ( x 2 - x l )  = 2 ,  (z6-z5) = 12, dashed 
curves are for (z2-zl) = 4. (z6-xj) = 10. 

conditions at finite distances from the indentation have also been considered. In 
figure 3 are plotted the wall vorticity variations for case 1 (with h = &) for two pairs 
of values of x1 and x6:  x1 = - 13.75, x6 = 13.25 (solid curve) and x1 = - 15.75, 
x6 = 11.25 (dashed curve). It can be seen that thc curves are coincident to within the 
accuracy of the plotting, except near the outlet boundary of the second configuration. 
Results given below are for the first configuration, and we expect, therefore, that 
solutions are not affected by the downstream boundary condition for ( x 6 - x )  > 2. 
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The effect of the boundary condition at the entrance t'o thc, flow region is of less 
concern (since we are primarily ir~terest~ed in the region x > x4). but is sew to be 
small, even near the ent'rance. 

The limitat>ion on the size of the t)imest>ep for the leapfrog method with t'he 
Dufort>-Frankel substitution has been shown by Schumann (197.5) to be somewhat 
more restrictive than the simple CFL criterion predicted from a one-dimensional 
analysis. In the present problem &able values of k have been found empirically and 
are given in bable 1. The c.p.u. time required to compute a complete cycle of the flow 
varied bet'wecn about 100 s for h = & (about) 15000 nodes) and 1000-8000 s for 
h. = & (about 60000 nodes) on the CYBER 205. Note that' in each case only a single 
cycle has been computed, since the residual perturhat>ion of the vclocity field a t  the 
end of a cycle is small and unlikely to affect significantly the subsequent dcvelopment 
of the flow. Furthermore, the experiments show that three-dimensional instabilities 
grow rapidly during the last st>agcs of tjhe cycle, so that) it is not clear that a two- 
dimensional simulation would agree more closely with experimental results if the 
transient effect were eliminated by computing a number of cycles. 

4. Description of results 
Results were obtained for three pairs of values of Reynolds number and Strouhal 

number as given in table 1. These parameters are the same as in certain of the flows 
considered experimentally and theoretically in PS, allowing quantitative comparison 
of various flow features. The amplitude of the wall movement, 6 = 0.38, is the same 
in each case. Qualitative comparison of instantaneous streamline plots with the 
photographs of PS is also possible, since the exposure times for the photographs are 
short compared with the timescale for changes in the velocity field, and thus the 
particle paths, appearing as short streaks, are approximately coincident with the 
streamlines. 

4.1. Flow I - development qf wuw 

Figure 4 shows instantaneous streamline plots for flow caw I, obtained using the 
mesh with h = A. The values of stream function for which contours were plotted, 
were chosen according to t,he following scheme : 

and 

(6.3) 

(24) 

(25) 

where $, was the stream-function value at  the indented wall for x > x5 and $,,,,, and 
$.,,, were the maximum and minimum values of the stream function in the range of 
x shown. The caption gives values of $w, $.,,, and kmln. 

The flow development is essentially the same as that found by PS, and is 
summarized only briefly here. At some time between t = 0 . 2  and t = 0.25, separation 
occurs in the lee of the indentation, and the resulting eddy grows rapidly (figure 
4 b ,  c ) .  A second eddy, of opposite sign, forms on the upper wall some distance 
downstream of the first, a third appears still further downstream on the> lower wall 
(figure 4d), and so on until there is a sequence of such eddies, of alternating sign, 
bounded by a wavy core flow (figure 4g). We shall adopt the convention of SPLS and 
PS in labelling the eddies alphabetically, as shown in figure 49 i t  can be seen that 
eddy B splits into two parts between t = 0.60 and t = 0.65. As t increases, not only 
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FIGURE 4. Instantaneous streamline plot sfor case I :  ( a )  $.,,, = 1.000, $.,,,, = -0.441, $, = -0.441 ; 
( b )  1.000, -0.456, -0.441; (c) 1.009, -0.326, -0.273; ( d )  1.037, -0.215, -0.143; (c)  1.076, 
-0.081, 0.000; (f) 1.101, 0.060, 0.143; (9)  1.109, 0.185, 0.273; (h)  1.106, 0.280. 0.375; (i) 1.093, 
0.354, 0.441; (j) 1.072, 0.394, 0.464; ( k )  1.003, 0.340, 0.373; ( I )  1.000, 0, 0. 
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FIGURE 5 .  Positions of crests and troughs corresponding to  eddy B (triangle symbols), eddy (' 
(square symbols) and eddy D (diamond symbols) in case 1. Filled symbols show experimental 
results from PS, unfilled symbols joined by unbroken lines are numerical results from the present 
work. Results froin the small-amplitude, inviscid theory of PS are shown as broken lines. 

does the number of eddies increase, but the lateral extent of existing eddies and the 
amplitude of the core's waviness also increases. The speed at which the wave front, 
propagates (the group velocity) is considerably greater than the speed at which an 
individual crest) or trough travels (the phase velocit'y). The eddies downstream of 
eddy B do not double in this computation, in contrast to figure 5 of PS, where C also 
doubled but Rr was a 1itt)le larger t>han here : 610 not' 507. As the indentat'ion recedes 
late in the cycle, the eddies shrink in size and st'rength and arc swept downstream 
(figure 4 k ,  1).  A rclgion of flow reversal is briefly formed on the upper wall opposite 
the indentat'ion (figure 4$), but at t = 1.0 (figure 4 k )  there is again vorticity of 
uniform sign at each wall. 

The group velocity and the phase velocities of different crestsltroughs have been 
estimated from the time-variation of the stream function in bhe flow. Wave-crest 
positions as functions of t'ime were obtained from the turning points in the axial 
variation of the s h a m  funct'ion at the centreline of the channel. The locations of the 
turning points corresponding to eddies B, C and D are plott,ed as unfilled symbols 
joined by unbroken lines in figure 5. When eddy doubling, or its precursor, streamline 
kinking, occurs, there may be three turning points corresponding to a single eddy, 
and this is shown in figure 5 by trifurcation of the unbroken lines. Phase velocities 
for B, C and D can be est'imated from the numerical values of dxldt in figure 5, which 
must be multiplied by the St'rouhal number in order to obt,ain velocities scaled on 
Go;  the resultant scaled phase velocities are approximately 0.2, 0.3 and 0.4 
respectively. The filled symbols represent experimental results from PS, which are 
discussed below. The broken curves represent the predictions of the small-amplitude 
theory developed in SPLS and PS. 

The group velocity has been estimated by calculating the differences, A$, between 
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the turning values of the stream function a t  the centreline and the centreline value 
for parallel flow. In figure 6, the times a t  which A$ for each of eddies B to F first 
attains a threshold value, are plotted against the axial locations of the eddy 
crests/troughs at these times. Figure 6 therefore shows the time required for a given 
magnitude of disturbance to  propagate a given distance, and is thus a measure of the 
group velocity. Two arbitrary values of A$o are considered, 0.05 and 0.15, giving 
approximate values of dxldt of 25.2 and 24.6 respectively ; the difference between 
thew values is probably attributable to the finite time-resolution of the results. 
Multiplication by St gives the values 0.93 and 0.91, which compare favourably with 
thc experimentally determined group velocity of about 1 .O, obtained from figure 10 
of PS. Since the mean fluid velocity is unity, these estimates of group velocity are 
consistent with the idea that the wave front is propagated primarily by convection 
within the core of the fluid rather than in slower-moving boundary layers. We note 
that the phase velocities of individual crests/troughs are smaller than the group 
velocity by factors of between about 2.3 and 4.6. 

1.2. Flou I - eddy doubling 

The mechanism rcsponsible for the splitting of eddies A and B, each into a pair of 
corotating recirculations, is of considerable interest (see PS) ; the sequence of events 
can be examined in more detail in the numerical simulation than is possible 
experimentally, although qualitatively the streamline plots agree well with figure 5 
of PS, despite the larger Reynolds number of 610 in that case. Concentrating on eddy 
B from its formation (figure 4 c  here, 5 b  of PS), we see that initially the closed 
streamlines are fairly symmetrical about the eddy centre. Later, they become more 
concentrated near the reattachment point (figure 4~ here, 5 c ,  d of PS), and 
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subsequently a secondary, counter-rotating separation region forms (figure 4f). The 
secondary eddy grows and the primary dividing streamline becomes kinked (figure 
4g), until primary and secondary streamlines meet and give a pair of corotating 
eddies (figure 4 h  h u e ,  5 e  of 1%). It is possible that a local strcam-function minimum 
is still present in figure 4(h) ,  located betwcen the corotating parts of eddy B but it 
docs not appear owing to thc automatic contour-value sclcction. The corotating eddy 
becomes detached from the wall (figure 4 i )  and then disappears (figure 4j) .  

A similar sequence of events may be inferred for eddy A .  it appears that a detached 
corotating recirculation is about to be formed at t = 0.65. However it is weak and 
fails to be captured by the plotting routine at t = 0.70, although i t  is j u s t  captured 
a t  t = 0 75 .  Doubling of eddy A has not previously been reported, although on csrcful 
examination, figure 4(d ,  P ,  f )  of PS appears to be consistent with such an occurrcxnw. 
For eddies other than A and B, no secondary separation is found numerically. but UP 

do note the concentration of streamlines at the downstrcam part of a given eddy and  
the development of kinked streamlines near eddy C (figure 4 i ,  j). 

With the aim of achieving a better understanding of the physical mechanisms 
underlying eddy doubling, vortieity contours have been plotted, and thosc 
corresponding to flow case I are given in figure 7. Contour values, Cc, were chosen 
according to 

5, = B(i - 1 )  Cmax, i = 1,8, (26) 

Q = iilm,,, i = 1 , 7 ,  (27) 

where f;,,, and C,,, were the instantaneous maximum and minimum values of 
vortieity in the region shown. 

At early times in the cycle, the vorticity contours are approximately parallel with 
the channel walls, and are closer together near the walls than at the centre of the 
channel. This is because the flow is accelerating and vorticity is being generated at 
the walls more rapidly than it can diffuse away from them. Subsequently, the 
vorticity contours become wavy and, in the core region, are almost coincident with 
the streamlines, confirming that vorticity transport 1s primarily convectivc i n  this 
part of the flow. The eddy core is represented by a region of approximately uniform 
vorticity (blank in figure 7) which is convected to a position a t  the downstrcarn end 
of each eddy (see figure 7 P + for eddy B, figure 7f+ for eddy C etc.). Kccause of thc 
no-slip condition, vorticity of opposite sign is generated between the core of each 
eddy and the wall. This is convected around the eddy, first upstream. then towards 
the centre of the channel, and then downstream again. As diffusive (viscous) 
cancellation with the vorticity of the main part of the eddy occurs, a characteristic 
‘comma’-shaped contour is produccd. In the case of cddy B. the tail of thc comma 
is broken (figure 79, h ) ,  giving rise to a closed vorticity contour We identify thc 
above process with eddy doubling. 

Thus, although the wave generation process and the formation of the principal 
region of closed streamlines in the eddy are essentially inviscid consequencvs of thc 
distortion of the oncoming vorticity profile, viscosity is an essential factor in cddy 
doubling, both in the generation of wunter-vorticity bcncath the main ctldy and in 
the diffusion of vorticity that leads to contour breaking later on (though not in the 
advection of the countcrvorticity around the primary vortex) Wc believe that this 
description of the vorticity dynamics gives a more soundly based account of eddy 
doubling than othcr explanations that have been offered. For example, Tutty & 
Cowley (1986) suggested that eddy doubling may be thc result of a linvar Raylcigh 
instability of the unsteady boundary-layer velocity profiles (such instabilities were 
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first investigat'ed, in t>he context of steady, interactive boundary-layer c>alculat,ions, 
by Smith & Bodonyi 1985). Howevcr, thc experiment's show the phenomenon to be 
deterministic and reproducible (PS), and furthermore it is not clear that the 
assumption of parallel flow is justified near the wall in (say) cddy B. Evcm if the 
assumption is valid, figures 4 and 7 show that Rayleigh's and Pjortoft's criteria for 
linear inviscid instability are satisfied in the vicinity of eddy I3 from as early as 
t = 0.4, after which one would expcwt a very rapid growth of the instability, whereas 
eddy doubling docs not occur until t = 0.65, by whic,h time t,he vorticity contours 
have been grossly modified by nonlinear effects. 

The idea t,hat eddy doubling may occur through a non-linear, inviscid wave- 
breaking process has been discussed by Borgas (1986), and tQere is evidence that) the 
nonlinear vorticity dynamics play an imporbant) rolc : indeed t>he vort<icity plots of 
figure 8 show feat>ures strikingly similar t'o those of Dritschel (1988), obtained using 
the inviscid met>hods of contour dynamics. Borgas argues that,, for a bhin eddy, 
significant irreversible distortion of vorticitp contours occurs in a finite t>irne only 
when the cddy is bounded by a strong vortex sheet : although there is no evidence of 
t>he latter in our comput)a,tions, neither is the eddy thin compared wit>h the channel 
width. Borgas proposes, as an a1t)ernat)ive mechanism. that backwards wave breaking 
of the kind dtmribed by Stern &' Prat't (1985) may cause eddy splitting. However. if 
this process were to occur, t>he sense of rotation of an eddy before splitting would 
need to be count,er-c.lockwise on the lower wall or clockwise on the upper wall, 
opposite t'o the sense observed. 

Yet another pot)ent>ial mechanism of eddy doubling, also briefly discussed in PS and 
suggested by F. T. Smith, relates it) to thc ejection into the flow of bursts of vorticity 
from the neighbourhood of the point of breakaway separation at the upstream end 
of the eddy (cf. Smith & Burggraf 1985). According to this idea the main region of 
closed streamlines consists of one. such burst, formed early in the wavc gencrabn 
process and convected to the downstream end of t,hc eddy. Behind this would be a 
relatively thin vortex sheet, and thc second, corot,ating eddy forms either because 
this becomes unst,able and rolls up or because of the ejection of another burst from 
t,he separation point. The present results suggest that this mechanism is not 
dominant in t,he case of eddy €3, because there is no evidence of either a vortex sheet 
or a significant concent,ration of vorticity emerging from the separat>ion point just) 
prior to  eddy doubling. On the other hand, t'he additional covorticit,y which is 
generated a t  the wall above eddy A, upstmam of eddy B just, before it doubles, 
presumably contribut,es bo the development of t>he new corot'ating eddy, akhough 
stronger regions of locally enhanced covort)icit,y are also present upst>ream of eddies 
C to F without giving rise to doubling (see also figures 8, 9). Some recent,ly comput>ed 
solutions of t,he Eider equations for the same t>ime-dependent geometry (M. E. Ralph 
&. T. J. Pedley. in preparation) show t>hat eddies of comparable sbrength bo those 
found here are also formed beneat>h t>he wave crests in inviscid flow. However, the 
eddies are shorter in an inviscid fluid. and eddy doubling does not, occur, so viscosity 
clca'rly has an important effect on t'he development of the eddies. Whether burst 
ejection makes a significant contribution (*annot yet) be det>ermined for this case. 

1.3. Flow I - t c d 1  ztortdcity 
Further aspc>ct>s of the flow are revealed by plots of wall vorticity c0, and thosc? 
corresponding to thc streamline plots of figure 4 arc givcn in figures 8 and 9 for the 
upper (unindented) and lower (indented) walls respectively. In  figure 8, negative 
values of co correspond to reversed wall shca,r, whilst positive values show flow 
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reversal in figure 9. We can trace the development of eddy B, for example, in figure 8. 
A local minimum in co is secn to develop initially near 2 = 1.5 (curves a and b )  
which leads to  flow reversal a t  the wall and a local c+hange in the sign of c0 (curve c) .  
Already, the minimum of 5, is nearer the downstream end of the region of separation, 
and this effect becomes increasingly pronounced. At t = 0.50 (curve e )  two distinct 
regions can be identified. an upstream zone in which there is a small, almost uniform 
value of co, and a downstream zone with a large and nearly symmetrical extremum. 
As this becomes grclater in magnitude. it moves downstream more rapidly than the 
position of the wave crest, roughly midway hvtwecn the separation and reattach- 
ment points. The development of a large (negative) peak in wall vorticity and its 
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FIGURE 9. Vorticity variation at the lower wall in case I: ( a )  t = 0.20; ( b )  0.30; (c) 0.40; ( d )  0.45; 
( e )  0.50; ( f )  0.55; (9) 0.60; (h)  0.65; ( i )  0.70; (j) 0.75; ( k )  0.90; (1) 1.00. 

downstream movement correspond to the concentration of closed streamlines near 
the reattachment point of the cddy. 

Next, a small embedded region of positive vorticity develops within eddy B 
(curve f ) ,  the two distinct regions of negative rorticity corresponding to  the two 
corotating eddies resulting from eddy doubling. Subsequently. the sign of the 
vorticity in the upstream part of thc eddy becomes positive again (curves 9 and h ) ,  
but the local maximum in persists until the end of the flow cycle. The minimum 
of c,, corresponding to the core of eddy €3 begins to decrease in magnitude (curves 
8g-k) as it continues to move downstream, until a t  t = 1.00 (curve /) the wall 
vorticity has uniform sign and only small spatial variations. 

Figures 8 and 9 also show that the development of eddies C, I) and E follow a 
similar course to that of eddy B, with two exceptions. First, there are zones of 
markedly increased positive vorticity just upstream of cddy I) (figure 8) and of 
negative vorticity upstream of eddies C and E (figure 9), corresponding to the wave 
crest above cddy C and the troughs bclow eddies B and U (cf. figure 7).  Secondly, in 
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the region of nearly uniform wall vorticity upstream of the peak in /{ol, the sign of 
5, does not change. Nevertheless, a local turning point of opposite sign develops just 
upstream of the primary extremum in each case, as for eddy B. Furthermore, the 
time interval between the first occurrence of separation associated with an eddy and 
the formation of the corresponding opposite extremum in wall vorticity is 
approximatcly the same, about 0.10, for each of eddies B, C, D and E, allowing for 
the finite time-resolution of the results. Likewise, the interval between first 
separation and the attainment of the greatest wall vorticity peak is about 0.15 in 
each case. (Compare figure 8 curves c, e ,  f for eddy B ;  9d ,  f ,  g for eddy C ;  8 e ,  g,  h for 
eddy I); and 9,f, h, i for eddy E.) These similarities suggest that the eddies have 
essentially identical structure, apart from the decrease in magnitude of peak 1 lo] 
with distance downstream. We note, however, that eddy A, whose inception is quasi- 
steady, does not show the same development. 

4.4. Flows I I  and I11 
The principal features of flow 11, with higher values of R e  and St, are similar to those 
of flow I (table I ) ,  but  certain details differ, and the streamline plots that show the 
differences are given in figure 10. The corresponding vorticity plots are given in figure 
11.  Comparison of figure 10 with figure 4 reveals that the wavelength is considerably 
shorter in case 11. Another difference is that after eddies A and B double, the strength 
of recirculation of each upstream part is greater in case I1 than case I. Furthermore, 
secondary corotating eddies are seen upstream of eddies C and D in figure 10, 
although their formation is not apparently preceded by the occurrence of a secondary 
counter-rotating recirculation, embedded within the primary vortex, as is the case 
for eddies A and B. Plots of wall vorticity (figure 12) show that the zones of enhanced 
vorticity on the walls opposite the crests/troughs (e.g. of positive vorticity upstream 
of eddy D, opposite the crest of eddy C) are shorter and more concentrated than in 
case I. Thus ejection of vorticity a t  the separation point may play a greater role for 
larger values of Re, which would be consistent with the ideas of Smith (see 54.2 
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( b )  53.0, -81.3; (c) 52.2, -76.3; ( d )  46.1, -66.1; ( e )  42.5, -55.4. 

above). Distinct recirculations can be seen on figure 10 in the regions where the core 
flow diverges rapidly from the wall. The generation of counter-vorticity beneath the 
eddy core nevertheless plays a similar role in the doubling of both B and C: in the 
former case it is this generation process that splits a single eddy into two parts, whilst 
in the latter it serves to inhibit coalescence of two already distinct eorotating eddies. 
This kind of doubling is not found in cases I and 111, because in them the magnitude 
of the wall vorticity upstream of each of eddies C to F is somewhat smaller. 

Another novel feature arises in the plots of wall vorticity for case 11, as shown in 
figure 12. Concentrating on eddy B (figure l2ii), we see that, as in case I, a large 
extremum develops, corresponding to the primary region of closed streamlines, with 
a region of more uniform negative vorticity of smaller magnitude upstream, and a 
region of positive vorticity in between. What is particularly interesting about case I1 
is that the secondary corotating and counter-rotating eddies themselves give rise to 
wall vorticity structures similar to that of eddy B overall, but  on a smaller scale. 
Thus each secondary eddy has its own primary extremum near the reattachment 
point and a subsidiary pair of extrema near the separation point, with the result that 
eddy B gives rise to as many as seven turning points in wall vorticity. Case I1 is the 
case with largest values of St and a’, so one might expect the vorticity dynamics to 
be dominated by unsteady inertia and therefore less influenced by viscosity. The 
present observations suggest that  the same dynamics govern the subeddies in case I1 
as govern the primary eddies. At even higher values of St and a’ a cascade of breaking 
vorticity waves might be expected. 

Flow case 111, with a higher value of Re but lower St than case I, also develops 
waves in the core. The wavelength is greater than that in each of eases I and 11, as 
expected from the inviscid, small-amplitude theory, and the amplitude somewhat 
less. The eddies are thus longer and thinner than in the other cases, but the regions 
of closed streamlines again become concentrated near the reattachment points. Eddy 
doubling, however, which occurs only for eddy B, is associated with a very weak and 
short-lived extremum in the stream function. In  the experiments, the new 
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recirculation formed by the doubling of eddy B was also observed to  be weaker than 
in the other cases, although the difference was less marked than in the numerical 
solutions. Furthermore, the experiments suggested that  eddy C also doublcd. These 
discrepancies suggest that ,  although the effects of numerical diffusion are generally 
small, they may be important when the flow parameters are close to  values critical 
for the occurrence of eddy doubling. 

5. Further discussion of results and comparison with experiment 
The results described in the previous section are, as already stated, in strong 

qualitative agreement with the experimental findings reported in SPLS and PS. In  
order t o  make a quantitative comparison between numerical and experimmtal 
results. data  for the measured positions of wave crests and troughs have been takcn 
from figures 16 and 18 of PS. These data  represent axial positions a t  which the 
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displacement of thc core attained local turning values. and each extrc>rnum is 
idcntified by the samc letter (B. C or D) as denotcs the corresponding eddy. Thc x- 
coordinates of these turning points have been rcscaled to  conform to the prescnt 
notation and are plottcd as filled symbols in figures 5, 13 arid 14 It should be noted 
that the displaccmcnts of difkrent streamlines may reach maxima a t  slightly 
difkrent axial locations, introducing an uncertainty in the experimental data For 
thc numerical results, a crcst or trough position can bc defined precisely as thc avid 
position at which t h t  axial stream-function variation a t  y = 2 attains a turning value 
(see $4, above). The broken lines in figures 5, 13 and 14 have been taken from 1’8 
and show crcst and trough positions predicted by the small amplitude inriscid 
theory. 

Agrcemcnt between the numerical and experimental results shown in figurw 5. 13 
arid 14 is generally very good, with discrepancies within the rarigc of the experimental 
scatter. This gives considerable confidence in both the numerical methods and the 
experimental measurements, as well as dcmonstrating the applicability of a two- 
dimensional solution over most of the flow cycle. The greatest differencw bet\vtcn 
the numerical and experimental results arise in figure 5, for eddy B early in thcl flow 
cyclc, and in figure 13, for eddy D late in the cycle. The increased discwpancies a t  
these points can probably be explained, in the first case. by the difficulty in 
determining the position of a small-amplitude crest, and, in thc second case. by 
incipient three-dimensional effects disturbing the experiments. 

The theowtical prcdictions of wavc.lcngth call be sccn to be in quite good 
agreement with the numcrical and experimental results. Thv theoretical dependence 
of wavelength on Strouhal number is approximatc>ly reproduwd numerically. and  
thercx is therefore no reason to doubt the hypothesis of SPLS and PS that this 1s 

dt>tcrmincd primarily by inviscaid vorticity dynamics in the cow The theory prcdicts 
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FIGCRE 14. Crest and trough positions in case I11 (see figure 5 for explanation of symbols) 

the phase velocity well in case I1 (highest Strouhal number), less well in case I and 
poorly in case I11 (lowest Strouhal number), and gives the position of eddy D 
inaccurately in all three cases. The numerical solutions of the full h’avier-Stokes 
equations show a dramatic improvement in the prediction of these features, as 
expected since thc assumptions of small amplitude, large wavelength and inviscid 
flow are not required numerically. In particular. in both the experimental and 
numerical flows, the flow rates downstream of the indentation incorporate large 
oscillatory components which may strongly affcct the crest/trough positions : for 
example in case I the oscillatory caomponent of flow rate has amplitude equal to 
approximately half the mean flow component. The small-amplitude approximation 
causes this feature to be neglected altogether in the theory. The question as to w hirh 
of the theoretical assumptions is the most important source of error in predicting 
crest/trough positions is currently being investigated further. At present, the fad 
that agreement with experiment and numerical integration is best at the highest 
values of the Strouhal number suggests that, in that case, the vorticity dynamics are 
dominated by a balance between unsteady and convective inertia. At lower values 
of St viscous terms are needed as well to  balance the convective inertia in a more 
quasi-steady manner. 

This is not the place to go in detail into the biomedical applications of this work, 
but one feature of the results descrves comment in that context. There is strong 
evidence of a link between the initiation of atheroschlerosis at sites on arter.y walls and 
the viscous shear stress a t  these sites, and it has been postulated that regions of flow 
separation are particularly vulnerable. Holieevcr, much of the discussion has been 
bascd on the assumption that the wall shear in a separated eddy is low, as in quasi- 
steady flows, whereas the present results (figures 8.9, 12) show that in unsteady flows 
the magnitude of the wall shear beneath an cddy can be very high, 5 6 times the 
value in steady, unseparated flou . Our results are for two-dimensional flow, but 
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coupled with the results of Ku et al. (1985), which indicate that variability of wall 
shear stress near a time-dependent reattachment point is important, they suggest 
that  a careful study of unsteady. internal, three-dimensional flows is needed before 
even a qualitative assessment of wall shear stress at particular sites in arteries can 
be made. 
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Appendix. The finite-difference equations 
In the following, subscripts i a n d j  refer to axial and transverse nodes i and j .  Note 

that at the unindented sections of the channel the given expressions revert to simpler 
forms. 

Denoting time level n by superscript v,, the expression used to update the vorticity 
t; a t  each timestep is as follows: 

t;;+l = A;W -2y,( l  +a;)It;;-l -72~ ;1 (@? j+ l -@?f -J  (ci"+l,j-t;;-l,j) 

- (@i"+l,j - @ L , j )  (C&+1- C&-l)l +Yl[2(t;;+l,j + c;-l,j) + c;; g j + 1 +  d; CZj-1 

+e;(ci"+l,j+l+ G-1,j-I - t;i"+1,j-1- !21,j+1)1+ Ysf;(c?j+l -Gj-l)h 

where A; = [1+2y,(l+a;)]-l, (A 2) 

(A 1) 

k 
Y 1 = = '  

Y z = h ' S t '  
k 

k 
Y:3 = h' 

a; = + (P,"ij)2> (A 6)  

h?! 23 = 1 zP1ij' (A 'i) 

c; = 2a; + hpT& (A 8) 

d?. v = 2aIZ.-hp".. a? 321' (A 9) 

e?. 23 = '&Iti. 3' (A 10) 

f "  a3 = pn.. ?ti'  (A 11) 

Thc finite-diffcrencc expression to bc satisfied by the stream function I/Y is 

- h2<.. 23 = - 2(  1 + ai j )  $ i j  + $i+l%j + $ i - l , j  + icij @i,j+l -k idij  $i,j-1 

++gij($i+l,j+l + $ i - l , j - l - I / Y i + l , j - - l - @ ~ - l , ~ + l ) ,  (A 12) 

in which all quantities are cvaluatcd a t  the current time level. 
The expressions for vorticity a t  the walls and at the outlet boundary are given 

below. The suffix 0 denotes the boundary node in question, and lower-case letters as 
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 fro^ RE 15 Xomenrlature for nodes near the boundaries ( a )  upper wall. ( b )  indentation region 
of louer \+all. ( r )  outflow boundary 

suffices denote nodes nearby, as shown in figure 15. Thus at z = 1 (figure 15a), we 
have 

and at  z = 0 (figurc 1 5 b ) .  
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